Formation of Three-vertex Metallaboranes from Monoborane Precursors: X-Ray Crystal Structures of the Molybdenum and Ruthenium Complexes $[Mo(\eta-C_5H_5)_2H(\eta^2-B_2H_5)]$ and $[Ru(\eta-C_5Me_5)(PMe_3)(\eta^2-B_2H_7)]$

Peter D. Grebenik,^a Malcolm L. H. Green,^{b*} Malcolm A. Kelland,^b John B. Leach,^a Philip Mountford,^b Graham Stringer,^b Neil M. Walker,^b and Luet-Lok Wong^b

^a Chemistry Unit, School of Biological and Molecular Sciences, Oxford Polytechnic, Gypsy Lane, Oxford OX3 0BP, U.K.

^b Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, U.K.

The novel three-vertex metallaborane [Ru(η -C₅Me₅)(PMe₃)(η ²-B₂H₇)] (1) has been synthesised by reaction of [Ru(η -C₅Me₅)(PMe₃)Cl₂] with NaBH₄; homologation is also observed in the reaction of [Mo(η -C₅H₅)₂H₂] with BH₃·THF, which forms [Mo(η -C₅H₅)₂H(η ²-B₂H₅)] (2); X-ray crystal structures of compounds (1) and (2) are reported.

The three-vertex metallaborane system $[\{M\}(\eta^2-B_2H_5)]$ has been described:¹ e.g. $[Fe(\eta-C_5H_5)(CO)_2(\eta^2-B_2H_5)]^2$ and the anions $[M(CO)_4(\eta^2-B_2H_5)]^-$ [M = Fe (ref. 3), Ru (ref. 4), orOs (ref. 5)]. Here we report the synthesis and X-ray structure $determination of <math>[Ru(\eta-C_5Me_5)(PMe_3)(\eta^2-B_2H_7)]$ (1), the first example of a three-vertex metallaborane of type $[\{M\}-(\mu-H)_2B_2H_5]$, which may be regarded as a metalla derivative of the unknown parent neutral borane species $[B_3H_9]$. Recently we have been studying metal-induced homologation reactions of monoborane species.⁶ We found that the prolonged reaction of $[Mo(\eta-C_5H_5)_2H_2]$ with an excess of BH₃·THF (THF = tetrahydrofuran) in THF under photolytic conditions gave the yellow compound $[Mo(\eta-C_5H_5)_2H(\eta^2-B_2H_5)]$ (2), which was isolated by column fractionation in *ca*. 20% yield. Interestingly, treatment of $[Mo(\eta-C_5H_5)_2Cl_2]$ with $[NaB_3H_8]$ followed by column fractionation also gave (2), in

$$[Ru(\eta-C_5Me_5)(PMe_3)(\eta^2-B_2H_7)]$$
(1)
[Mo(\eta-C_5H_5)_2H(\eta^2-B_2H_5)]
(2)
[Ru(\eta-C_5Me_5)(PMe_3)(\eta^2-BH_4)]
(3)

ca. 12% yield. The structure of (2), determined by single crystal X-ray diffractometry,[†] is shown in Figure 1, together with selected bond distances and angles. The structure consists of a {Mo}B₂ triangle with H(12) bridging the two BH₂ groups. The long B(1)–H(20) distance of 2.09 Å indicates that H(20) is not bridging to B(1). In the ¹H n.m.r. spectrum of (2), H(12) gives rise to a broad, unresolved resonance at δ -4.69, whereas the resonance at δ -6.65 assigned to H(20) is sharper and shows some quartet fine structure.

We noted striking similarities between the ¹H n.m.r. spectrum[‡] of (2) and that reported by Suzuki *et al.* for the ruthenium tetrahydroborate compound $[Ru(\eta-C_5Me_5)-$

Crystal data for (1): $C_{13}H_{31}RuPB_2$, M = 341.06, orthorhombic, space group *Pnma*, a = 16.589(5), b = 12.695(5), c = 8.234(1) Å, U =1734 Å³, Z = 4, $D_c = 1.31$ g cm⁻³, F(000) = 712, $\mu(Mo-K_{\alpha}) = 9.587$ cm⁻¹, crystal size ca. $0.35 \times 0.3 \times 0.35$ mm. Data were collected $(2\theta_{max} = 56^{\circ})$ with an Enraf-Nonius CAD4 diffractometer, using monochromated Mo- K_{α} radiation. Empirical absorption corrections were applied and structure solution and refinement were carried out using 1605 observed reflections $[I > 3\sigma(I)]$ from 2741 independent reflections measured. The structure was solved by Patterson and Fourier methods. All non-hydrogen atoms were located and refined anisotropically. The methyl hydrogens were placed in calculated positions. The hydrogen atoms of the η^2 -B₂H₇ unit were located from the difference maps and their positional and isotropic thermal parameters were included in the refinement. Full-matrix least-squares refinement of 100 least-squares parameters has led to final agreement factors of R = 0.0277 and $R_w = 0.0334$.

Atomic co-ordinates, bond lengths and angles, and thermal parameters have been deposited at the Cambridge Crystallographic Data Centre. See Notice to Authors, Issue No. 1.

 $\ddagger N.m.r.$ data (solvent [²H₆]benzene unless otherwise stated): ¹H n.m.r. at 250 MHz and ¹¹B n.m.r. at 80.21 MHz; chemical shifts (δ) in p.p.m. and coupling constants in Hz; H_t and H_b refer to, respectively, terminal and bridging hydrogen attached to boron.

Compound (1): ${}^{1}H{}^{1}B{}$ n.m.r. 1.8 (m, 4H, 4BH_t), 1.7 (s, 15H, η -C₅Me₅), 0.85 [d, 9H, J(P-H) 10, PMe₃], -3.5 [br. s, 1H, H(43)], and -11.1 {2H, t, J[H(1)-P] = J[H(1)-BH_t] 18, H(1) and H(1B)}; {}^{1}B n.m.r. -21.4 [tt, J(B-H_t) 100, J(B-H_b-B) = J(B-H_b-Ru) 43, 2B].

Compound (2): ${}^{1}H{}^{11}B{}$ n.m.r. 4.22 (s, 10H, 2 η -C₅H₅), 2.70 (br. s, 2H, 2BH_t), 2.41 (br. s, 2H, 2BH_t), -4.69 {sext, 1H, J[H(12)-BH_t] = J[H(12)-H(20)] 7.5, H(12)}, and -6.65 {q, 1H, J[H(20)-H(12)] = J[H(20)-BH_t] 7.5, H(20)}; {}^{11}B{} n.m.r. -9.65 (t, 1B) and -11.12 (t, 1B).

Compound (3): ${}^{1}H{}^{11}B{}$ n.m.r. 6.58 [q, 1H, $J(P-H) = J(H_t-H_b) 5$, BH_t], 6.02 [q, 1H, $J(P-H) = J(H_t-H_b) 9$, BH_t], 1.68 [d, 15H, J(P-H)1.4, η -C₅Me₅], 1.20[d, 9H, J(P-H) 8.5, PMe₃], and -12.13 [ddd, 2H, J(P-H) 13, $J(H_bLH_t) 9$ and 5, 2Ru-H_b-B]; ${}^{11}B$ n.m.r. 34.8 [tt, $J(B-H_t)$ 110, $J(B-H_b) 61$].

Figure 1. Crystal structure of the complex (2). The molecule lies across a crystallographic mirror plane. Atoms Mo(1), B(1), B(2), H(12), and H(20) lie on the mirror plane. Atoms with designation B are related to their counterparts by the symmetry operator [x, y, 1/2 - z]. Selected bond distances (Å) (Cp = η -C₃H₅): Mo(1)–Cp(centroid) 1.968, Mo(1)–B(1) 2.383(4), Mo(1)–B(2) 2.394(4), Mo(1)–H(20) 1.53(5), B(1)–B(2) 1.796(6), B(1)–H(11) 1.06(3), B(1)–H(12) 1.31(4), B(2)–H(21) 1.08(3), B(2)–H(12) 1.07(5), B(1)–H(20) 2.09(5). Selected bond angles (°): Cp(centroid)–Mo(1)–Cp(centroid) 139.8, B(1)–Mo(1)–B(2) 44.2(2), B(1)–H(12)–B(2) 97(3), B(1)–Mo(1)–H(20) 60(2), H(11)–B(1)–H(11B) 107(4), H(21)–B(2)–H(21B) 110(4), H(11)–B(1)–H(12) 107(2), H(21)–B(2)–H(12) 102(2).

Figure 2. Crystal structure of the complex (1). The molecule lies across a crystallographic mirror plane. Atoms Ru(1), P(1), C(1), C(11), C(21), and H(43) lie on the mirror plane. Atoms with designation B are related to their counterparts by the symmetry operator [x, 1/2 - y, z]. Selected bond distances (Å) (Cp = η -C₅Me₅): Ru(1)-Cp(centroid) 1.88, Ru(1)-P(1) 2.2752(9), Ru(1)-B(1) 2.304(4), B(1)-B(1B) 1.93(1), Ru(1)-H(1B) 1.61(4), B(1B)-H(1B) 1.43(4), B(1B)-H(43) 1.363(4), B(1B)-H(41B) 1.13(3), B(1)-H(42) 1.08(3). Selected bond angles (°): Cp(centroid)-Ru(1)-P(1) 130.46, B(1)-H(43)-B(1B) 90.4(3), B(1)-Ru-B(1B) 49.6(3), Ru(1)-H(1B) 91.9(30), H(1)-B(1)-H(42) 112.9(30).

[†] Crystal data for (2): $C_{10}H_{16}MOB_2$, M = 253.8, orthorhombic, space group Pbnm (non-standard setting of Pnma), a = 6.565(1), b =12.199(4), c = 13.418(2) Å, U = 1074.5 Å³, Z = 4, $D_c = 1.57$ g cm⁻³, F(000) = 512, $\mu(Mo-K_{\alpha}) = 11.4$ cm⁻¹, crystal size ca. $1.0 \times 0.9 \times 1.0$ mm. Data were collected $(2\theta_{max} = 84^{\circ})$ with an Enraf-Nonius CAD4 diffractometer using monochromated Mo- K_{α} radiation. An empirical absorption correction was applied and structure solution and refinement were carried out using 2831 observed reflections $[I > 3\sigma(I)]$ from 3859 independent reflections measured. The structure was solved by Patterson and Fourier methods. All atoms were located and included in the refinement. Full-matrix least-squares refinement of 94 leastsquares parameters has led to final agreement factors of R = 0.0417and $R_w = 0.0433$.

 $(PMe_3)(\eta^2-BH_4)$] (3).⁷ We reinvestigated the reported reaction of $[Ru(\eta-C_5Me_5)(PMe_3)Cl_2]$ with an excess of NaBH₄ and found, as the minor product, the metallaborane complex $[Ru(\eta-C_5Me_5)(PMe_3)(\eta^2-B_2H_7)]$ (1) as well as (3). These compounds can be separated by fractional crystallisation.

The structure of (1) has been determined by single-crystal X-ray diffractometry⁺ and is shown in Figure 2, together with selected bond distances and angles. The central unit consists of a $\{Ru\}(\mu-H)_2(B_2H_5)$ moiety, which is the first example of η^2 -B₂H₇ bonding geometry in three-vertex metallaborane species. The Ru-H(1) and B-H(1) distances of 1.61 and 1.43 Å, respectively, clearly indicate the presence of Ru-H-B bridges.

The ¹H n.m.r. spectrum of (1) is the same as that quoted by Suzuki *et al.* for compound (3). The ¹¹B n.m.r. spectrum‡ of (1) shows a complex symmetrical resonance at δ -21.4 approximating to a triplet of triplets, due to splitting of the BH₂ triplet (J 100 Hz) by two different adjacent bridging hydrogen atoms (J ca. 43 Hz). Heteronuclear decoupling of the resonance at δ -3.6 in the ¹H n.m.r. spectrum, assigned by Suzuki *et al.* to a terminal hydrogen attached to boron in (3), removed a small B-H_b coupling rather than a B-H_t coupling; this implies that this resonance is due to H(43). The ¹H n.m.r. spectrum of (3) showed a single broad resonance at δ -12.13 due to Ru-H-B, but no resonances in the region δ -3 to -5, which we consider may be characteristic of B-H-B bridges in these three-vertex metallaboranes. The terminal boron hydrogen atoms resonate at δ 6.02 and 6.58. We have determined the crystal structure of (3) and this will be discussed in a subsequent publication. Comparison of the ¹H n.m.r. data of (1) and (3) with those reported by Suzuki *et al.* for the compounds $[Ru(\eta-C_5Me_5)(PR_3)(\eta^2-BH_4)]$ (PR₃ = PEt₃, Prⁱ₃, PCy₃, PPh₃, or PPh₂Me) suggests that the triethylphosphine compound is also a three-vertex metallaborane analogous to (1); the others have been correctly assigned tetrahydroborate structures.

We thank the S.E.R.C. for CASE awards (to G. S., N. M. W. and P. M.), the Guy-Newton Foundation for a Fellowship (to L.-L. W.), and the Chemical Crystallography Laboratory, University of Oxford.

Received, 17th February 1988; Com. 8/00602D

References

- 1 J. D. Kennedy, Prog. Inorg. Chem., 1984, 32, 519; 1986, 34, 211.
- 2 J. S. Plotkin and S. G. Shore, J. Organomet. Chem., 1979, 182, C15.
- 3 S. G. Shore, J. S. Plotkin, J. C. Huffman, G. J. Long, T. P. Fehlner, and R. L. DeKock, Abstracts, 181st ACS National Meeting, 1987, Inorg. 104.
- 4 G. Medford and S. G. Shore, J. Am. Chem. Soc., 1978, 100, 3953.
- 5 T. J. Coffy and S. G. Shore, Abstracts, 181st ACS National Meeting, 1987, Inorg. 158.
- 6 P. D. Grebenik, M. L. H. Green, M. A. Kelland, J. B. Leach, and L.-L. Wong, International Meeting on Boron Chemistry, Bechyne, June, 1987, Abstract CA13, VI.
- 7 H. Suzuki, D. H. Lee, N. Oshima, and Y. Moro-oka, Organometallics, 1987, 6, 1569.